(1E)-1, 3-DIMETHOXY-1, 3-BUTADIENE

Paul Dowd* and William Weber

Department of Chemistry, University of Pittsburgh Pittsburgh, Pennsylvania 15260

Abstract Reaction of 1,1-dimethoxy-2-butyne (II) with sodium methoxide in dimethyl sulfoxide at 100° yields (1E)-1,3-dimethoxybutadiene (III) (20-30%) The diene III undergoes ready Diels-Alder reaction with maleic anhydride, N-phenyltriazolinedione and dimethyl acetylenedicarboxylate

The utility of the 1, 3-dioxygenated butadienes has been demonstrated by the recent accomplishments of Danishefsky and his coworkers, ¹ who have explored (1*E*)-1-methoxy-3-trimethylsilyloxybutadiene (I), as well as a number of other electron-rich dienes, in a variety of synthetic applications.

We recently encountered an instance in which the anticipated Diels-Alder reaction of I with thiolene-2-one was circumvented by a competing intermolecular trimethylsilyl group transfer reaction yielding 2-trimethylsilyloxythiophene and 4-methoxybut-3-ene-2-one

For this reason, it seemed worthwhile to explore the 1.3-dialkoxybutadienes (1) for those rare instances in which silvl group transfer diverts the normal course of the Diels-Alder reaction, and (11) because in spite of the considerable interest recently generated in this area, ¹ the 1.3-dialkyloxybutadienes are a rarity and their preparation has remained obscure 1, 2

We have now found that heating a mixture of 1,1-dimethoxy-2-butyne (II) with sodium methoxide in dimethyl sulfoxide at 100° for 2.75 hours, yields directly (1E) 1 3-dimethoxy-buta-1,3-diene (III)³ in 20-30% yield after workup and distillation as a colorless liquid bp $53-58^{\circ}/22 \text{ mm}$ Although the yield is modest, the reaction is simple and isolation of the product is straightforward. We view this reaction, tentatively as an S_N^2 ' displacement of methoxide by methoxide followed by isomerization of the resulting intermediate allene to the product diene. The normal course of such a reaction, in which the butyne II is

2155

heated with sodium methoxide in methanol, results in addition to the triple bond yielding 1, 1, 3-trimethoxybut-2-ene.⁴

The diene III readily yields adducts with maleic anhydride, N-phenyltriazolinedione and dimethyl acetylenedicarboxylate. 5

We found the Danishefsky diene¹ much easier to handle than the new diene III The latter is subject to discoloration and polymerization on heating and it was found to be advantageous to include a small amount of BHT in the preparation and distillation of III

Acknowledgement This research was generously supported by Grant GM 27667 from the National Institute for General Medical Sciences

References and Notes

- (1) S Danishefsky, T Kitahara, C F Yan, and J. Morris, J. Am Chem Soc, 101 6996 (1979); S Danishefsky, Accts. Chem Res., 14, 400 (1981)
- (2) O. A. Shavrygina and S M Makin, Khim Farm. Zh , 3, 17 (1969)
- (3) The 300 MHz nmr spectrum showed a vinyl AB quartet at 66.93 and 5.32 with $J_{AB}=1253$ Hz, indicative of the <u>E</u> configuration, a terminal vinyl AB quartet at 63.93 and 3.91 with $J_{AB}=182$ Hz together with a pair of methoxy singlets at 63.59 and 3.61 ppm. The nmr spectrum also revealed a persistent small impurity with peaks near 3.60 ppm which was diminished but not completely removed in two conventional short-path distillations
- (4) L Claisen, <u>Chem. Ber</u>, <u>44</u>, 1165 (1911), J C Lunt and F Sondheimer <u>J Am</u> <u>Chem Soc.</u>, <u>72</u>, 3361 (1950), L Crombie, S. H Harber and R J D Smith J. Chem. Soc , 2754 (1956)
- (5) Dimethyl acetylenedicarboxylate yielded both dimethyl 4-methoxyphthalate (44%) and dimethyl 3-methoxyphthalate (19%), whose properties compared favorably with those reported Cf H Neunhoeffer and G. Werner, <u>Ann</u>, 1955 (1973), and J. A Profitt, T Jones, and D S. Watt, Syn Comm, 457 (1975).

(Received in USA 5 February 1982)